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Abstract 
 

Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced 
gas turbine engine systems because of their ability to significantly increase engine operating temperatures 
and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Under 
the NASA Ultra-Efficient Engine Technology (UEET) program, advanced T/EBCs are being developed 
for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the 
CMC liner and vane temperature capability to 1650 °C (3000 °F) in oxidizing and water vapor containing 
combustion environments. Advanced low conductivity thermal barrier coatings (TBCs) are also being 
developed for metallic turbine airfoil and combustor applications, providing the component temperature 
capability up to 1650 °C (3000 °F). The advanced T/EBC system is required to have increased phase 
stability, low lattice and radiation thermal conductivity, and improved sintering, erosion and thermal 
stress resistance, and water vapor stability under the engine high-heat-flux and thermal cycling 
conditions. Advanced high heat-flux testing approaches have been established for the coating 
developments. The simulated combustion water-vapor environment is also being incorporated into the 
heat-flux test capabilities for evaluating T/EBC performance at very high temperatures under thermal 
cycling conditions. 

In this paper, ceramic coating development considerations and requirements for both the ceramic and 
metallic components will be described for engine high temperature and high-heat-flux applications. The 
performance and durability of several ZrO2 or HfO2/mullite and mullite/BSAS model coating systems 
were investigated. The underlying coating failure mechanisms and life prediction approaches will be 
discussed based on the simulated engine tests and fracture mechanics modeling results. Further coating 
performance and life improvements will be expected by utilizing advanced coating architecture design, 
composition optimization, in conjunction with more sophisticated modeling and design tools. 
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Motivation

— Advanced thermal and environmental barrier coatings (T/EBCs) can
significantly increase gas temperatures, reduce cooling requirements, 
and improve engine fuel efficiency and reliability
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Revolutionary Ceramic Coatings Greatly Impact Gas 
Turbine Engine Technology
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Si3N4 and coating systems

— Ceramic coatings are critical to future engine efficiency, power density 
and compactness goals

NASA UEET Goals
• 70% NOx reduction
• 8-15% increase in efficiency
• 8-15% reduction in CO2

Coating Development Issues
• Low thermal conductivity 
• High temperature stability
• Erosion and radiation resistance

2700 °F
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OBJECTIVES

• High-heat-flux and simulated engine test capabilities for advanced 
barrier coating developments
– In-situ conductivity measurements and coating degradation 

evaluation
– Simulated engine testing
– Sintering, strength and fracture behavior

• Low conductivity thermal barrier coatings

• The 3000 °F (1650 °C) thermal and environmental barrier coatings 
for SiC/SiC CMC and metallic combustors/vanes

• Advanced Si3N4 coating systems
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NASA Steady-State Laser Heat-Flux Approach for 
Ceramic Coating Thermal Conductivity Measurements

▬ A uniform laser (wavelength 10.6 µm) power distribution achieved using integrating 
lens combined with lens/specimen rotation

▬ The ceramic surface and substrate temperatures measured by 8 micron and two-color 
pyrometers and/or by an embedded miniature thermocouple 

▬ Thermal conductivity measured at 5 second intervals in real time
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Laser Heat Flux Testing in Water Vapor Environments 
for Si-Based Ceramics/Coatings

– Laser heat flux steam rig
- Precise control of heat flux and temperatures of test specimen
- Automated control of chamber temperature and steam environments
- High temperature and high heat flux testing capabilities
- Innovative “micro-steam environment” concept allows high vapor pressure, 
velocity and temperature as required
- Real time specimen health monitoring capability

- Steam injected at up to 5m/sec
- Testing temperature >1700 °C
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High Pressure Burner Rig (HPBR) for 
Ceramic Coatings Testing 

- Realistic combustion environments for specimen and component testing

• Burns jet fuel and air
• Tgas: up to 1650 °C (3000 °F)
• 4-12 atmospheres
• 10-30 m/s (6” ID)
• TC and optical temp. 

measurement 
• Variable geometry

Test Section

Rail System

Combustor

1” button TEBC coating specimen 
holder for the burner rig testing
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Thermal Conductivity of Current Thermal 
Barrier Coating Systems

Current thermal barrier coatings consist of ZrO2-8wt%Y2O3

— relatively low intrinsic thermal conductivity ~2.5 W/m-K
— high thermal expansion to better match superalloy substrates
— good high temperature stability and mechanical properties

— Additional conductivity reduction is achieved by incorporating micro-porosity

100 µm

Ceramic coating

Bond coat

25 µm

Ceramic coating

Bond coat
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Coating Thermal Conductivity Reductions by 
Porosity are limited in Practical Applications
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— The conductivity reduction achieved by microcracks and micro-porosity 
can not persist under high temperatures due to coating sintering

— The coating mechanical properties also affected by too high porosity
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ZrO2-8wt%Y2O3/Mullite+BSAS/Si System under High 
Temperature Steady-State Laser Heat-Flux Testing

— ZrO2-8wt%Y2O3/mullite+BSAS TEBC system on SiC/SiC CMC tested at 
Tsurface1482 °C (2700 °F) and Tinterface 1300 °C (2350 °F)

— Conductivity initially increased due to sintering
— Conductivity later decreased due to delamination resulting from the large 

sintering shrinkage
— Coating delaminates at temperature due to sintering/creep
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Sintering Behavior of the Plasma-Sprayed 
ZrO2-8wt%Y2O3 Coatings

— Sintering shrinkage as a function of time and temperature determined 
using dilatometer

― Sintering can induce surface cracking and delamination

ZrO2-8wt%Y2O3/Mullite+BSAS/Si System
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Thermal Conductivity Increase Kinetics of Plasma-
Sprayed ZrO2-8wt%Y2O3 Coatings due to Sintering

— The conductivity reduction by microcracks and micro-porosity can not 
persist under high temperatures due to coating sintering

— The coating durability can be affected by sintering
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Flexure Strength and Toughness Increases Kinetics as a 
Function of Annealing/Sintering Time

— Initially fast sintering induced strength and fracture toughness increases 
also observed for plasma-sprayed ZrO2-8wt%Y2O3 coatings
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Development of Advanced Defect Cluster Low 
Conductivity Thermal Barrier Coatings

— Multi-component oxide defect clustering approach used for the advanced
coating development – US Patent No. 6,812,176

— Defect clusters associated with the dopant segregation identified from 
moiré fringe patterns and electron energy loss spectroscopy (EELS) 
under high resolution TEM

— The 5 to 100 nm size defect clusters designed for the significantly reduced 
thermal conductivity and improved stability

EELS elemental maps of EB-PVD ZrO2-
14mol%(Y, Gd,Yb)2O3

Plasma-sprayed ZrO2-
13.5mol%(Y, Nd,Yb)2O3

EB-PVD ZrO2-12mol%(Y, 
Nd,Yb)2O3

e.g., ZrO2-Y2O3-Nd2O3(Gd2O3,Sm2O3)-Yb2O3(Sc2O3) systems
Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes
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Plasma-sprayed coatings

— Thermal conductivity rate-of-increase significantly reduced at high 
temperatures for the low conductivity defect cluster thermal barrier 
coatings

— Phase stability also improved
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Low Conductivity Oxide Defect Cluster Coatings 
Demonstrated Improved High Temperature Stability
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Thermal Conductivity of Oxides Cluster Thermal 
Barrier Coatings Tested at Higher Temperatures

― Both cubic phase low k coatings and t’ tetragonal plasma-sprayed 
coatings showed significantly lower thermal conductivity as compared 
to baseline ZrO2-8wt%Y2O3 under higher temperatures
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Furnace Cyclic Behavior of Plasma-Sprayed ZrO2-
(Y,Gd,Yb)2O3 Thermal Barrier Coatings 

― The cubic-phase ZrO2-based low conductivity TBC durability can be further 
significantly improved by an 8YSZ or low k tetragonal t’-phase interlayer

― The tetragonal t’-phase low conductivity TBCs achieved at least the 
baseline 8YSZ life
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Effects of Defect Cluster Dopant Ratio and Bond Coat 
Optimization on Coating Conductivity and Furnace Cyclic Life

― Optimized dopant ratio lowered coating conductivity and improved furnace 
cyclic life

― Bond coat and interface processing optimization can also improve
durability
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― The low conductivity combustor and turbine airfoil thermal barrier 
coatings successfully tested under laboratory simulated engine thermal 
gradient cyclic conditions

― The low conductivity combustor and turbine airfoil thermal barrier 
coatings successfully tested under laboratory simulated engine thermal 
gradient cyclic conditions

Advanced Low Conductivity TBC Showed Excellent 
Long-Term High Temperature Cyclic Durability
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Development of Advanced Erosion Resistant Thermal 
Barrier Coatings

― Advanced high toughness, multi-component erosion resistant low 
conductivity thermal barrier coatings also under development
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Advanced 3000 °F (1649 °C) Coatings

High temperature capability 
thermal and radiation barrier
Energy dissipation and chemical 
barrier interlayer

Secondary radiation barrier, thermal 
control with chemical barrier interlayer

Environmental barrier
Ceramic matrix composite (CMC)

— High temperature stability
— Low thermal conductivity
— Excellent thermal stress resistance
— Enhanced radiative flux resistance and radiation cooling
— Improved environmental protection
— Designed functional capability
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Advanced 3000 °F (1649 °C) Coatings Development 
for SiC/SiC Combustor Liner and Vane Applications

— The multicomponent hafnia(zirconia) coating/modified mullite systems demonstrated 
excellent cyclic durability and radiation resistance at 1650 °C (3000 °F)

— Advanced high temperature ceramic bond coats also developed
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Advanced Environmental Barrier Coatings 
for Si3N4 Applications

– Multi-layered, rare earth and silicon doped HfO2/mullite 2700 °F 
environmental barrier coating systems developed:
– Advanced low expansion doped HfO2 used for high stability top layer
– Modified mullite as the interlayer and environmental barrier
– Doped HfO2 or mullite 2700 °F+ capable bond coats (eliminating Si bond 

coat)
– High Temperature plasma-spray technique used for coating processing

Multi-layer coating systems 
for 2700 °F Si3N4 components

Advanced doped HfO2

Doped HfO2/mullite 
bond coat
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Doped mullite composite
Modified mullite 

environmental barrier
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A 2700 °F capable coating system 
for Si3N4

Plasma-spray processing of 
Environmental barrier coating

N
A

SA
/T

M
—

2005-213437
27



Coating Radiation Performance Evaluation and 
Radiation Barrier Coatings Development

— Radiation conductivity evaluated using the laser heat flux approach
— Significant conductivity increase due to increased radiation at high 

temperatures especially under thermal gradients
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Evaluation of Radiation Thermal Conductivity of 
T/EBC Systems at High Temperatures

— Radiation conductivity increases with thermal gradient and thus heat 
flux

— Advanced HfO2 coatings demonstrated improved radiation resistance 
compared to the baseline ZrO2-8wt%Y2O3 coating
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Summary and Conclusions

• Advanced testing approaches established for ceramic coating 
development

• Real-time monitoring of coating thermal conductivity 
demonstrated as an effective technique to assess coating 
performance under simulated engine heat flux conditions

• The multi-component TBCs demonstrated lower conductivity, 
improved high temperature stability and cyclic durability required 
for advanced turbine airfoil and combustor applications

• High toughness erosion resistant turbine airfoil TBC development
showed significant progress

• Advanced 1650 °C (3000 °F) T/EBC systems developed for
Si-based ceramics
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Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine

systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements,

thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low

emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane tempera-

ture capability to 1650 °C (3000 °F) in oxidizing and water vapor containing combustion environments. Low conductivity

thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing

the component temperature capability up to 1650 °C (3000 °F). In this paper, ceramic coating development considerations

and requirements for both the ceramic and metallic components will be described for engine high temperature and high-

heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based

on the simulated engine tests and fracture mechanics modeling results.








